位置:凯图新闻网 > 前沿科技 > 正文 >

使用Python构建一个推荐系统需要几步

2020年05月21日 14:55来源:未知手机版

黄伊真,做无痛多少钱,拉斯普丁

在我看来,作为一位中国人的我们不管做什么决定都在面临多种选择。例如,如果我这个时候想要买一本书,但是我却不知道我想看什么书、不知道类型、不知道方向,那么这个时候打开各种进行软件搜索可能会出现各种各样的结果。我可能会浪费大量时间在互联网上浏览各种并在各个希望淘金的站点中进行拖曳。我可能会寻求其他人的建议。

但是,如果有一个网站或应用程序可以根据我之前阅读的内容向我推荐书,那么会很好的帮助到我,不用浪费时间在各种网站上自己去找书,我只需登录网站或者应用程序就好了!它会根据我的口味量身定制的10本书推荐给我

这就是推荐引擎所做的事情,现如今,大多数企业正在利用它的力量。从亚马逊到网飞(Netflix),从谷歌到Goodreads,毫不夸张的说推荐引擎是机器学习技术中使用最广泛的应用之一。

在本文中,我们将介绍各种类型的推荐引擎算法以及在Python中创建推荐引擎的基础知识。我们还将看到这些算法工作背后的数学原理。最后,我们将使用矩阵分解来创建自己的推荐引擎。

1.什么是推荐引擎?

在买东西的时候,如果对产品有任何疑问的时候,人们通常倾向于购买他们的朋友或信任的人推荐给他们的产品。这在曾经是人们主要的购买方式。但是随着数字时代的到来,这个圈子已经扩大到包括利用某种推荐引擎的网站。

推荐引擎使用不同的算法过滤数据,并向用户推荐最相关的物品。它首先记录了客户的过去行为,并在此基础上推荐了用户可能购买的产品。

如果是一个全新的用户访问了电子商务网站,则该网站将没有该用户的任何历史记录。那么在这种情况下,网站如何向用户推荐产品呢?一种可能的解决方案是推荐网站内最畅销的产品,即需求量大的产品。另一个可能的解决方案是推荐可以为企业带来最大利润的产品。

如果我们可以根据客户的需求和兴趣向他们推荐一些商品,那么它将对用户的体验产生积极影响并可能会导致用户的频繁访问。因此,当今的企业正在通过研究用户的过去行为来构建智能的推荐引擎。

现在,我们对推荐引擎有了一个大体的了解,现在让我们看一下它是怎么工作的。

2.推荐引擎的工作方式

在深入探讨这个主题之前,首先我们先考虑一下如何向用户推荐商品:

我们可以向用户推荐在所有用户中最受欢迎的商品

我们可以根据用户的偏好(用户特性)将其分为多个部分,并根据其所属的部分向他们推荐商品

以上的两种方法都有其缺点。在第一种情况下,每个用户最受欢迎的商品都是相同的,因此每个人都会看到相同的推荐。在第二种情况下,随着用户数量的增加,用户特性的数量也会增加。因此,将用户划分为不同的部分将是一项非常困难的任务。

这里的主要问题是我们无法根据用户的特定兴趣来定制建议。就像亚马逊推荐你购买笔记本电脑,只是因为它被大多数购物者购买了。但值得庆幸的是,亚马逊(或任何其他大公司)都不推荐使用上述方法的产品。他们使用一些个性化的方法来帮助他们更准确地推荐产品。

现在,通过执行以下的步骤来重点介绍推荐引擎的工作方式。

2.1数据收集

这是构建推荐引擎的第一步,也是最关键的一步。可以通过两种方式收集数据:显式和隐式。 显式数据是有意提供的信息,即来自用户的输入,例如电影分级。隐式数据是不是有意提供的信息,而是从可用数据流(例如搜索历史,点击次数,订单历史记录等)中收集的信息。

>在上图中,Netflix正在以用户对不同电影给出的评分的形式明确地收集数据。

>在这里,用户的订单历史记录是由Amazon记录的,这是隐式数据收集模式的一个例子。

本文地址:http://www.k2summit.cn/qianyankeji/2481617.html 转载请注明出处!

今日热点资讯